Evaluation of Image Scrambling Degree with Intersecting Cortical Model Neural Network

نویسندگان

  • Chunlin Li
  • Guangzhu Xu
  • Chunxian Song
  • Jing Jing
چکیده

Scrambling transformation plays an important role in information hiding application, so offering an effective evaluation method for scrambling algorithms is becoming increasingly necessary. The paper firstly analyzed the Arnold transformation process to get some universal rules about the periodicity of scrambling process, then used the improved Intersecting Cortical Model Neural Network (ICMNN) designed especially to extract 1D signatures of the original image and scrambled images which could effectively reflect the image structure changing processing. Finally L1 norm was adopted to evaluate the scrambling degree and the universal rules obtained above were used to verify the results. The experimental results showed that the proposed method could analyze and evaluate the scrambling degree efficiently and had a promising application future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, Development and Evaluation of an Orange Sorter Based on Machine Vision and Artificial Neural Network Techniques

ABSTRACT- The high production of orange fruit in Iran calls for quality sorting of this product as a requirement for entering global markets. This study was devoted to the development of an automatic fruit sorter based on size. The hardware consisted of two units. An image acquisition apparatus equipped with a camera, a robotic arm and controller circuits. The second unit consisted of a robotic...

متن کامل

An Efficient Iris Recognition System Based on Intersecting Cortical Model Neural Network

Iris recognition has been shown to be very accurate for human identification. In this article, an efficient iris recognition system based on Intersecting Cortical Model (ICM) neural network is presented which includes two parts mainly. The first part is image preprocessing which has three steps. First, iris location is implemented based on local areas. Then the localized iris area is normaliz...

متن کامل

A novel method for iris feature extraction based on intersecting cortical model network

Iris recognition has received increasing attentions due to its distinct characteristics in recent years. An efficient approach for iris feature extraction plays a very important role in an iris recognition system. In this paper, we developed a novel method for iris feature extraction utilizing the Intersecting Cortical Model (ICM) network which is a simplified model of Pulse-Coupled Neural Netw...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012